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Summary

The general problem of determining footprint overlap for instruments on
different platforms was analyzed by determining the formation flying and
pointing requirements needed to satisfy the science requirements of the
Cloudat and PICASSO-CENA missions. A control value of +/-1 km was
found to satisfy the requirement of keeping the footprints within 2 km of
each other. If the pointing errors are considered as pure random variables this
control results in a 71% probability of footprint overlap. However, if the
pointing errors a considered to be fixed biases, the difference between the
crosstrack bias values must be less than the sum of the footprint half-widths
in order to reach the goal of the footprints overlapping 50% of the time.
Satisfying this limit has an 81% probability of occurrence. Combining both a
bias and various noise levels indicated that the 50% overlap criterion is
independent of the noise. For lower bias values the noise decreases the
likelihood of overlap but the noise has the opposite effect for higher bias
values. The effect of having a tighter control band on the overlap probability
was also studied.



Introduction

The future trend in Earth System science is to have multiple satellites rather
than multiple instruments on large platforms. Even the measurements from
the large EOS platforms will be combined with observations from separate
satellites. Since there is usually an upper limit on the time difference allowed
between the observations of the same region, some sort of formation flying is
required to meet both the spatial and temporal requirements. Another
application, perhaps even more stringent, is the calibration of an instrument
sent up on a new platform to replace the measurements of an existing
instrument.

This analysis involves the relationship between the footprints of the Cloudsat
(CS) Cloud Profiling Radar (CPR) and the PICASSO-CENA (PC) Lidar. It
addresses the following Science Requirement and Science Goal:

> For all points along the PC groundtrack, the edge of the nearest CS CPR
footprint shall fall within 2 km of the edge of the nearest PC Lidar footprint

on the same rev with a two-sided 3¢ probability (= 99.73%)
> There is a goal to have the footprints overlapping at least 50% of the time

Method of Investigation

Referring to Figure 1, there are five variables and parameters to consider
when discussing the separation of the footprint edges. If d is the distance
between the edges:

d =1 x+ zx(ug ox) — 2, (1 0p) | =700 -35.25

where X is crosstrack position of the CS groundtrack with respect to that of PC.
The maximum of x is X and the 700 and 35.25 represent the half-widths of the
CS and PC swaths respectively in meters. The random variable z(u, ;)
represents the pointing offset of the lidar aboard PC. It is assumed to be
normally distributed with a mean p; and a standard deviation of ;. Note that
although a non-normal distribution might affect the results it would be
somewhat easily factored into this analysis. The pointing of the CPR is
represented by a similar variable zy(lg, og)-
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The analysis was divided into five parts. The first part addressed the 2 km
between edges requirement. It is a separate, but necessary step before
addressing the overlap probability issue. Using the resultant formation flying
requirement, the overlap was determined by first assuming the pointing
errors were white noise with the means p; and p; assumed to be zero. Next a
fixed bias in the relative pointing was assumed with the same statistics. Then
a combination of a bias and a variety of noise values was analyzed. Finally a
tighter formation scenario, reflecting the practical case of including
atmospheric drag uncertainty, was used for the combination bias/noise case.

A CPR crosstrack pointing error budget is 0.064° at the 3c level was used,
corresponding to 795 m, or a one-sigma value of oy = 265 m. Similarly, the
lidar has a 30 value of 1500 m and thus o; = 500 m. The first step is to
convolute the two normal distributions by root-sum-squaring the standard
deviations, giving a combined ¢ = 565.9 m and maintaining a zero mean. This
simplifies the previous equation for d to be:



d=1x+2(05659) | -735.25
Substituting the 2 km boundary requirement for d, and X for x produces:
2000 > | X +2(0,565.9) | —735.25

Since this requirement is at the 3c level, the value 1698 m can be substituted
for the z variable leaving X < 1038 m. For convenience and conservatism this
number was rounded down to 1 km. Thus the derived requirement is:

The Cloudsat groundtrack must be maintained within +/- 1 km of the
PICASSO-CENA groundtrack in the cross-track direction to insure that the
edges of their footprints remain within 2 km of each other.

Doing the probability distribution function (pdf) convolution also allows the
interesting pictorial explanation of both the calculation of X and the
probability of overlap discussed below. As the value of x is increased, the two
outside vertical lines on the right figure of Figure 2 shift to the left. When the
red-hatched area is equal to the compliment of a (one-sided) 3¢ probability, x
is equal to X (one-sided because x = -X must also be accounted for). With the
left vertical fixed, as the value of Ix| varies during the maneuver cycle (as
discussed below) the probability of overlap (green-hatched area) varies
accordingly. Note that figures are valid for the entire +/- X range for x, with
the caveat that when Ix| < 735.35 (so that the CS pdfis to the left of the PC
pdf), the green-hatched area on the left figure represents the probability of not
overlapping.

To consider the overall probability of the footprint overlap, several
assumptions as to the navigation control scheme and the behavior of the two
groundtracks have to made. Subsequent analysis by D. Chart where he
actually integrated the orbits and calculated the groundtracks, has verified
these assumptions.

Atmospheric drag will affect both PC and CS by decreasing their semi-major
axes (sma’s). Due to different ballistic coefficients, there will be a differential
effect in the SMA decrease, PC falling faster than CS. The idealized case used
in this analysis assumed a maneuver is performed to make the CS sma about
100 m below that of PC when the CS groundtrack (gt) is on the western 1 km
boundary with respect to the PC gt. Being in a lower orbit implies that the CS
gt will move eastward with respect to the PC gt. Using the current estimates
of the difference in ballistic coefficients a half a week later, the CS sma will be
the same as that of PC and the CS gt will be on the eastern boundary.



is the area representing footprint overlap

is the area representing footprint overlap
but now also its cumulative probability

[
IxI - 735,25

represents probability of d be greater than 2 km,
thus when it equals 0.135%, x = X, its allowable maximum

Convolution of the Cloudsat and PICASSO-CENA
Probability Distribution Functions
Figure 2



Atmospheric drag will affect both PC and CS by decreasing their semi-major
axes (sma’s). Due to different ballistic coefficients, there will be a differential
effect in the SMA decrease, PC falling faster than CS. The idealized case used
in this analysis assumed a maneuver is performed to make the CS sma about
100 m below that of PC when the CS groundtrack (gt) is on the western 1 km
boundary with respect to the PC gt. Being in a lower orbit implies that the CS
gt will move eastward with respect to the PC gt. Using the current estimates of
the difference in ballistic coefficients (note all these details will be given in a
separate memo) a half a week later, the CS sma will be the same as that of PC
and the CS gt will be on the eastern boundary.

Note that the atmospheric density was assumed constant at an extreme value
corresponding to a geometric storm. More reasonable density values would
result in less frequent maneuvers and smaller excursions in sma but the
same excursions in gt differences so the following results would still hold.
The constant density implies a linear change in sma and a quadratic change
along-track the orbit corresponding to also a quadratic change in gt cross-track.
After the half-week epoch CS’s sma would be above PC’s and the gt would
drift westward. At the end of the week the initial conditions would be reoccur
necessitating another identical maneuver.

Since the two satellite inclinations are identical, the separation discussed
above refers to the orbital maximum separation which occurs at the equator
crossings. If CS is east of PC , it will be to the right of PC at the ascending node,
cross paths at the maximum latitude and be on the left side of PC at the
descending node. Rather than integrating orbits and comparing gt's the
following model was used to represent the cross-track position of the CS gt
with respect to the PC gt.

x = (-787350 * (t-5040) +1000)*sin(2nt/98.8777)

where x is the cross-track separation distance in meters (note its maximum
value is the X derived above). The time in minutes is designated by t and the
orbital period is fixed at the 98.8777 value. The latter designation is an
approximation in itself since even with perfect two-body plus constant drag
model assumed so far, the period will vary slightly as the CS sma changes.
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However, again this simulation should suffice to get the desired results. The
results of running this model for a full week starting at the maneuver are
shown in Figure 3. The combination of the quadratic long-term and
sinusoidal once-per-rev signals is evident in the figure.

Results
Again using the above formalism for the separation distance d, it can be set to
zero to represent the onset of overlap. Then for any given value of x, the
probability of overlap is represented by:

2(0,565.9) < 735.25— | x |

where the absolute value must be used because again we are concerned about
the separation distance. The following table gives some examples for clarity:



These values can be verified by again looking at Figure 2 and substituting the
values of x into the right-hand figure. However, a better illustration of how
the probability varies throughout the cycle is shown in Figure 4. Here the
probability values in blue are overlaid on the x values from Figure 3. The

Table

1

Probability of Ouverlap for some chosen x values (Noise Only)

x (m) z_.. (m) Stdz_. (o) Probability
0 735.25 1.299 90 %
735.25 0 0 50 %
1000 -264.75 -0.4678 32 %

method creating the blue curve is described in the next paragraph.
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The next step is to see what the effective probability is over one complete
maneuver cycle. Although an analytical integral may have been possible, it
was decided to do this numerically. Using the same 1008 10-minute points for
x that were used to create Figure 3, a spreadsheet was used to calculate all the
corresponding z,..’s and probabilities (and thus the blue curve in Figure 4).
Summing and dividing by 1008 to get the average gave a value of 71% for the
probability of overlap. If the pointing offsets were actual rapidly changing
random variables, then not only would the probability of overlap for an
arbitrary time be 71% but as the mission progresses the accumulative time of
overlap would also tend toward this number.

In actuality, the pointing offsets could be slowly varying or have a fixed
component corresponding to the mean offsets (u’s) mentioned previously.
First an analysis looked at the case of fixed biases, followed by the cases of
fixed plus random noise. A variable B was introduced to represent the bias
offset difference between the lidar and radar. It is assumed to have the same
statistics as z (since z; — z; has the same statistics as z; + zg) but is considered
fixed throughout the maneuver cycle. For the bias-only case, consider

d=1x+B1|-73525

where again d is the distance between the edges of the footprints. Different
values of B can be chosen and then using a similar process to that used above,
the 1008 values of x can be substituted so statistics for d can be produced for a
full cycle. Negative values for d correspond to overlap. Interesting results
were obtained and shown in Figure 5. (Note the curve would have been
smoother if more bias values had been looked at.) First consider no bias, B = 0,
where the percentage of overlap is 84%. This is an important statistic since it
represents the limit of no bias and no random noise. Next consider the goal of
having 50% overlap. From the figure this occurs with the magnitude of the
bias being at its 80.55 percentile but more pertinent this occurs when B =
735.25 m. This makes sense heuristically since overlap then occurs when x is
the same sign as B and x behaves symmetrically. Further it suggests a goal to
the instrument designers:

If the crosstrack component of the offset bias of each instrument can be
limited to less than the half-cone angle of their footprint, 50% overlap of the
footprints can be ensured (ignoring the random component).

For the CPR, 700 m is reasonable compared to the total (3c) pointing error
budget of 795 m. However, 35.25 represents a tight bias control compared to
the current value of 1500 m for the total pointing error for the lidar. (Note
that in PC presentations subsequent to this analysis, they have indicated
much better overall pointing control error budgets).
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The next step was to combine the bias and noise models. For each of the same
bias values, noise values were included. Specifically 50% (blue curve) and
100% (green curve) of the original standard deviation were picked and shown
in Figure 6. The method used to calculate the probability of overlap was
similar to that for the noise-only case, that is, find the average probability of
overlap over the 1008 x values. In this case

d= I x +2z(B,565.9) | —735.25

However, it is worth noting that the methods used for the noise-only and
bias-only are actually the same. When d is negative during the bias method it
can be considered to have a 100% probability of overlap and likewise a
positive value corresponds to 0%. Therefore the average probability is the
same as the proportion of negative values times 100. If n is the number of
negative values, this can be represented mathematically as:

[(n) 100% + (1008-n) 0%] /1008 = (n/1008) 100%.
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Figure 6

The results shown in Figure 6 were again interesting. The red circle is the
probability of overlap with no bias or noise. The green circle represents the
no-bias and 100% noise value determined earlier. The 50% percentage of
overlap still corresponds to a bias magnitude that has a 81% probability of
occurrence and is independent of the noise. Heuristically, it is best to think of
the analogy to a simple normal zero-mean distribution curve. The probability
of the random variable being negative or positive is 50% and is independent
of the standard deviation of the variable. Away from this special value, the
noise decreases the percentage of overlap for lower bias magnitude
(probability) but the noise has the opposite effect for higher values. Again,
there is an analogy, this time with two overlapping normal curves. When the
means are close, increasing either sigma decreases the overlap but when the
means are far apart, increasing either sigma increases the probability of
overlap.
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The final step was to account for the fact that in actuality the crosstrack
variation of the nadir points will not be at it’s maximum value of one
kilometer. The method of designing maneuvers to not exceed these
boundaries is the subject of another analysis. The general idea is to aim for a
considerably smaller offset target so that uncertainties in solar activity and the
resultant changes in atmospheric density do not cause the constraints to be
violated. In order to best represent the range of possibilities it was decided to
create the curves where there was no crosstrack variation. That is, the overlap
is entirely dependent upon the pointing errors. Overlaying these results with
those obtained previous obtained the useful regions depicted in Figure 7.
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Figure 7

The area between the green lines represents the results for a Noise value of
100% with a variation from 1 km crosstrack excursion on one edge of the
region to zero excursion on the other. Likewise for the blue lines (50% Noise)
and red lines (0% Noise). The edge of the latter case representing no noise
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and no excursion clearly indicates the concept of the bias being less than the
half-width sum (always overlapped) versus the bias being greater than this
value (never overlapped).

Conclusions

The straightforward result that a control requirement of +/- 1 km ensures a 3-
sigma satisfaction of the “2-km between footprints edges” requirement was
used for the subsequent maneuver design strategy formulation. The scientific
community was pleased with an 81% probability of obtaining 50% overlap
assuming that the bias difference in the instruments can be kept less than the
sum of the half-widths of the footprints. The pointing error budgets will be
further evaluated as the spacecraft bus and instrument designs for both
missions mature. One aspect not mentioned yet is the assumptions of
normality in the pointing error components. Even though this assumption is
still believed to be valid, it is worth noting that an analysis similar to that
presented above could be repeated with non-normal distributions.



